Skip to main content

Worksheet Worksheet

Instructions: Solve the system of equations by elimination. If the system has either zero or infinitely many solutions, explain how you can determine this information from your calculations.

1.

\(\left\{ \begin{array}{rcrcr} x \amp + \amp 2y \amp = \amp 7 \\ -2x \amp + \amp y \amp = \amp 1 \end{array} \right.\)

2.

\(\left\{ \begin{array}{rcrcr} x \amp - \amp 2y \amp = \amp 4 \\ -3x \amp + \amp 6y \amp = \amp -12 \end{array} \right.\)

3.

\(\left\{ \begin{array}{rcrcr} 3x \amp - \amp 2y \amp = \amp -8 \\ -x \amp + \amp 3y \amp = \amp 5 \end{array} \right.\)

4.

\(\left\{ \begin{array}{rcrcr} -2x \amp + \amp 3y \amp = \amp -8 \\ -x \amp + \amp 2y \amp = \amp -5 \end{array} \right.\)

5.

\(\left\{ \begin{array}{rcrcr} 2x \amp - \amp 3y \amp = \amp 1 \\ 4x \amp - \amp 6y \amp = \amp 4 \end{array} \right.\)

6.

\(\left\{ \begin{array}{rcrcr} 3x \amp + \amp 4y \amp = \amp 5 \\ 2x \amp + \amp 2y \amp = \amp 3 \end{array} \right.\)

7.

\(\left\{ \begin{array}{rcrcr} 2x \amp - \amp y \amp = \amp -4 \\ x \amp - \amp 2y \amp = \amp 5 \end{array} \right.\)

8.

\(\left\{ \begin{array}{rcrcr} -3x \amp - \amp 5y \amp = \amp -3 \\ x \amp + \amp y \amp = \amp 6 \end{array} \right.\)

9.

\(\left\{ \begin{array}{rcrcr} 3x \amp + \amp 3y \amp = \amp 4 \\ -3x \amp - \amp 2y \amp = \amp -1 \end{array} \right.\)

10.

\(\left\{ \begin{array}{rcrcr} 4x \amp + \amp 2y \amp = \amp -1 \\ 3x \amp + \amp 2y \amp = \amp 2 \end{array} \right.\)